Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Immunol ; 9(94): eadg7549, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640252

RESUMEN

Vedolizumab (VDZ) is a first-line treatment in ulcerative colitis (UC) that targets the α4ß7- mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) axis. To determine the mechanisms of action of VDZ, we examined five distinct cohorts of patients with UC. A decrease in naïve B and T cells in the intestines and gut-homing (ß7+) plasmablasts in circulation of VDZ-treated patients suggested that VDZ targets gut-associated lymphoid tissue (GALT). Anti-α4ß7 blockade in wild-type and photoconvertible (KikGR) mice confirmed a loss of GALT size and cellularity because of impaired cellular entry. In VDZ-treated patients with UC, treatment responders demonstrated reduced intestinal lymphoid aggregate size and follicle organization and a reduction of ß7+IgG+ plasmablasts in circulation, as well as IgG+ plasma cells and FcγR-dependent signaling in the intestine. GALT targeting represents a previously unappreciated mechanism of action of α4ß7-targeted therapies, with major implications for this therapeutic paradigm in UC.


Asunto(s)
Colitis Ulcerosa , Humanos , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Integrinas , Mucosa Intestinal , Ganglios Linfáticos Agregados , Inmunoglobulina G/uso terapéutico
3.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333091

RESUMEN

Ulcerative colitis (UC) is an idiopathic chronic inflammatory disease of the colon with sharply rising global prevalence. Dysfunctional epithelial compartment (EC) dynamics are implicated in UC pathogenesis although EC-specific studies are sparse. Applying orthogonal high-dimensional EC profiling to a Primary Cohort (PC; n=222), we detail major epithelial and immune cell perturbations in active UC. Prominently, reduced frequencies of mature BEST4+OTOP2+ absorptive and BEST2+WFDC2+ secretory epithelial enterocytes were associated with the replacement of homeostatic, resident TRDC+KLRD1+HOPX+ γδ+ T cells with RORA+CCL20+S100A4+ TH17 cells and the influx of inflammatory myeloid cells. The EC transcriptome (exemplified by S100A8, HIF1A, TREM1, CXCR1) correlated with clinical, endoscopic, and histological severity of UC in an independent validation cohort (n=649). Furthermore, therapeutic relevance of the observed cellular and transcriptomic changes was investigated in 3 additional published UC cohorts (n=23, 48 and 204 respectively) to reveal that non-response to anti-Tumor Necrosis Factor (anti-TNF) therapy was associated with EC related myeloid cell perturbations. Altogether, these data provide high resolution mapping of the EC to facilitate therapeutic decision-making and personalization of therapy in patients with UC.

4.
Gastroenterology ; 164(4): 619-629, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36634824

RESUMEN

BACKGROUND & AIMS: Better biomarkers for prediction of ulcerative colitis (UC) development and prognostication are needed. Anti-integrin αvß6 (anti-αvß6) autoantibodies have been described in patients with UC. We tested for the presence of anti-αvß6 antibodies in the preclinical phase of UC and studied their association with disease-related outcomes after diagnosis. METHODS: Anti-αvß6 autoantibodies were measured in 4 longitudinal serum samples collected from 82 subjects who later developed UC and 82 matched controls from a Department of Defense preclinical cohort (PREDICTS [Proteomic Evaluation and Discovery in an IBD Cohort of Tri-service Subjects]). In a distinct, external validation cohort (Crohn's and Colitis Canada Genetic Environmental Microbial project cohort), we tested 12 pre-UC subjects and 49 matched controls. Furthermore, anti-αvß6 autoantibodies were measured in 2 incident UC cohorts (COMPASS [Comprehensive Care for the Recently Diagnosed IBD Patients], n = 55 and OSCCAR [Ocean State Crohn's and Colitis Area Registry], n = 104) and associations between anti-αvß6 autoantibodies and UC-related outcomes were defined using Cox proportional hazards model. RESULTS: Anti-αvß6 autoantibodies were significantly higher among individuals who developed UC compared with controls up to 10 years before diagnosis in PREDICTS. The anti-αvß6 autoantibody seropositivity was 12.2% 10 years before diagnosis and increased to 52.4% at the time of diagnosis in subjects who developed UC compared with 2.7% in controls across the 4 time points. Anti-αvß6 autoantibodies predicted UC development with an area under the curve of at least 0.8 up to 10 years before diagnosis. The presence of anti-αvß6 autoantibodies in preclinical UC samples was validated in the GEM cohort. Finally, high anti-αvß6 autoantibodies was associated with a composite of adverse UC outcomes, including hospitalization, disease extension, colectomy, systemic steroid use, and/or escalation to biologic therapy in recently diagnosed UC. CONCLUSIONS: Anti-integrin αvß6 autoantibodies precede the clinical diagnosis of UC by up to 10 years and are associated with adverse UC-related outcomes.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedad de Crohn , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Autoanticuerpos , Proteómica , Enfermedad de Crohn/tratamiento farmacológico , Biomarcadores , Colitis/complicaciones
5.
Nat Med ; 28(4): 766-779, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35190725

RESUMEN

B cells, which are critical for intestinal homeostasis, remain understudied in ulcerative colitis (UC). In this study, we recruited three cohorts of patients with UC (primary cohort, n = 145; validation cohort 1, n = 664; and validation cohort 2, n = 143) to comprehensively define the landscape of B cells during UC-associated intestinal inflammation. Using single-cell RNA sequencing, single-cell IgH gene sequencing and protein-level validation, we mapped the compositional, transcriptional and clonotypic landscape of mucosal and circulating B cells. We found major perturbations within the mucosal B cell compartment, including an expansion of naive B cells and IgG+ plasma cells with curtailed diversity and maturation. Furthermore, we isolated an auto-reactive plasma cell clone targeting integrin αvß6 from inflamed UC intestines. We also identified a subset of intestinal CXCL13-expressing TFH-like T peripheral helper cells that were associated with the pathogenic B cell response. Finally, across all three cohorts, we confirmed that changes in intestinal humoral immunity are reflected in circulation by the expansion of gut-homing plasmablasts that correlates with disease activity and predicts disease complications. Our data demonstrate a highly dysregulated B cell response in UC and highlight a potential role of B cells in disease pathogenesis.


Asunto(s)
Colitis Ulcerosa , Células Plasmáticas , Linfocitos B , Colitis Ulcerosa/genética , Humanos , Mucosa Intestinal/patología , Recuento de Linfocitos , Linfocitos T Colaboradores-Inductores
6.
Sci Rep ; 11(1): 13308, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172783

RESUMEN

Gastrointestinal symptoms are common in COVID-19 patients but the nature of the gut immune response to SARS-CoV-2 remains poorly characterized, partly due to the difficulty of obtaining biopsy specimens from infected individuals. In lieu of tissue samples, we measured cytokines, inflammatory markers, viral RNA, microbiome composition, and antibody responses in stool samples from a cohort of 44 hospitalized COVID-19 patients. SARS-CoV-2 RNA was detected in stool of 41% of patients and more frequently in patients with diarrhea. Patients who survived had lower fecal viral RNA than those who died. Strains isolated from stool and nasopharynx of an individual were the same. Compared to uninfected controls, COVID-19 patients had higher fecal levels of IL-8 and lower levels of fecal IL-10. Stool IL-23 was higher in patients with more severe COVID-19 disease, and we found evidence of intestinal virus-specific IgA responses associated with more severe disease. We provide evidence for an ongoing humeral immune response to SARS-CoV-2 in the gastrointestinal tract, but little evidence of overt inflammation.


Asunto(s)
COVID-19 , Heces , Microbioma Gastrointestinal , Nasofaringe/virología , ARN Viral/aislamiento & purificación , Anciano , Biomarcadores/metabolismo , COVID-19/epidemiología , COVID-19/inmunología , Estudios de Cohortes , Citocinas/metabolismo , Heces/virología , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Masculino , Persona de Mediana Edad , Ciudad de Nueva York/epidemiología , SARS-CoV-2/aislamiento & purificación
7.
Gastroenterology ; 160(7): 2435-2450.e34, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676971

RESUMEN

BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.


Asunto(s)
COVID-19/virología , Enfermedades Gastrointestinales/virología , Inmunidad Mucosa , Mucosa Intestinal/virología , SARS-CoV-2/patogenicidad , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , COVID-19/inmunología , COVID-19/mortalidad , Estudios de Casos y Controles , Células Cultivadas , Citocinas/sangre , Femenino , Enfermedades Gastrointestinales/diagnóstico , Enfermedades Gastrointestinales/inmunología , Enfermedades Gastrointestinales/mortalidad , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/sangre , Mucosa Intestinal/inmunología , Italia , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Pronóstico , Medición de Riesgo , Factores de Riesgo , SARS-CoV-2/inmunología , Carga Viral
8.
medRxiv ; 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-32935117

RESUMEN

Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of coronavirus disease 2019 (COVID-19), we investigated intestinal infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its effect on disease pathogenesis. SARS-CoV-2 was detected in small intestinal enterocytes by immunofluorescence staining or electron microscopy, in 13 of 15 patients studied. High dimensional analyses of GI tissues revealed low levels of inflammation in general, including active downregulation of key inflammatory genes such as IFNG, CXCL8, CXCL2 and IL1B and reduced frequencies of proinflammatory dendritic cell subsets. To evaluate the clinical significance of these findings, examination of two large, independent cohorts of hospitalized patients in the United States and Europe revealed a significant reduction in disease severity and mortality that was independent of gender, age, and examined co-morbid illnesses. The observed mortality reduction in COVID-19 patients with GI symptoms was associated with reduced levels of key inflammatory proteins including IL-6, CXCL8, IL-17A and CCL28 in circulation but was not associated with significant differences in nasopharyngeal viral loads. These data draw attention to organ-level heterogeneity in disease pathogenesis and highlight the role of the GI tract in attenuating SARS-CoV-2-associated inflammation with related mortality benefit. ONE SENTENCE SUMMARY: Intestinal infection with SARS-CoV-2 is associated with a mild inflammatory response and improved clinical outcomes.

9.
medRxiv ; 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32909002

RESUMEN

We sought to characterize the role of the gastrointestinal immune system in the pathogenesis of the inflammatory response associated with COVID-19. We measured cytokines, inflammatory markers, viral RNA, microbiome composition and antibody responses in stool from a cohort of 44 hospitalized COVID-19 patients. SARS-CoV-2 RNA was detected in stool of 41% of patients and more frequently in patients with diarrhea. Patients who survived had lower fecal viral RNA than those who died. Strains isolated from stool and nasopharynx of an individual were the same. Compared to uninfected controls, COVID-19 patients had higher fecal levels of IL-8 and lower levels of fecal IL-10. Stool IL-23 was higher in patients with more severe COVID-19 disease, and we found evidence of intestinal virus-specific IgA responses associated with more severe disease. We provide evidence for an ongoing humeral immune response to SARS-CoV-2 in the gastrointestinal tract, but little evidence of overt inflammation.

10.
PLoS One ; 13(8): e0200322, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30067768

RESUMEN

Commensal gastrointestinal bacteria resist the expansion of pathogens and are lost during critical illness, facilitating pathogen colonization and infection. We performed a prospective, ICU-based study to determine risk factors for loss of gut colonization resistance during the initial period of critical illness. Rectal swabs were taken from adult ICU patients within 4 hours of admission and 72 hours later, and analyzed using 16S rRNA gene sequencing and selective culture for vancomycin-resistant Enterococcus (VRE). Microbiome data was visualized using principal coordinate analyses (PCoA) and assessed using a linear discriminant analysis algorithm and logistic regression modeling. 93 ICU patients were analyzed. At 72 hours following ICU admission, there was a significant decrease in the proportion of Clostridial Clusters IV/XIVa, taxa that produce short chain fatty acids (SCFAs). At the same time, there was a significant expansion in Enterococcus. Decreases in Cluster IV/XIVa Clostridia were associated with loss of gut microbiome colonization resistance (reduced diversity and community stability over time). In multivariable analysis, both decreased Cluster IV/XIVa Clostridia and increased Enterococcus after 72 hours were associated with receipt of antibiotics. Cluster IV/XIVa Clostridia, although a small fraction of the overall gastrointestinal microbiome, drove distinct clustering on PCoA. During initial treatment for critical illness, there was a loss of Cluster IV/XIVa Clostridia within the distal gut microbiome which associated with an expansion of VRE and with a loss of gut microbiome colonization resistance. Receipt of broad-spectrum antibiotics was associated with these changes.


Asunto(s)
Clostridium/crecimiento & desarrollo , Tracto Gastrointestinal/microbiología , Anciano , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Clostridium/efectos de los fármacos , Clostridium/genética , Enfermedad Crítica , Heces/microbiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Análisis de Componente Principal , Estudios Prospectivos , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , Factores de Tiempo , Enterococos Resistentes a la Vancomicina/genética , Enterococos Resistentes a la Vancomicina/crecimiento & desarrollo , Enterococos Resistentes a la Vancomicina/aislamiento & purificación
11.
BMC Genomics ; 19(1): 210, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29558893

RESUMEN

BACKGROUND: There has been increasing interest in discovering microbial taxa that are associated with human health or disease, gathering momentum through the advances in next-generation sequencing technologies. Investigators have also increasingly employed prospective study designs to survey survival (i.e., time-to-event) outcomes, but current item-by-item statistical methods have limitations due to the unknown true association pattern. Here, we propose a new adaptive microbiome-based association test for survival outcomes, namely, optimal microbiome-based survival analysis (OMiSA). OMiSA approximates to the most powerful association test in two domains: 1) microbiome-based survival analysis using linear and non-linear bases of OTUs (MiSALN) which weighs rare, mid-abundant, and abundant OTUs, respectively, and 2) microbiome regression-based kernel association test for survival traits (MiRKAT-S) which incorporates different distance metrics (e.g., unique fraction (UniFrac) distance and Bray-Curtis dissimilarity), respectively. RESULTS: We illustrate that OMiSA powerfully discovers microbial taxa whether their underlying associated lineages are rare or abundant and phylogenetically related or not. OMiSA is a semi-parametric method based on a variance-component score test and a re-sampling method; hence, it is free from any distributional assumption on the effect of microbial composition and advantageous to robustly control type I error rates. Our extensive simulations demonstrate the highly robust performance of OMiSA. We also present the use of OMiSA with real data applications. CONCLUSIONS: OMiSA is attractive in practice as the true association pattern is unpredictable in advance and, for survival outcomes, no adaptive microbiome-based association test is currently available.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Diabetes Mellitus Tipo 1/mortalidad , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota/genética , Animales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/microbiología , Heces/microbiología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Fenotipo , Filogenia , Estudios Prospectivos , Tasa de Supervivencia
12.
Nat Microbiol ; 1(11): 16140, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27782139

RESUMEN

The early life microbiome plays important roles in host immunological and metabolic development. Because the incidence of type 1 diabetes (T1D) has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota, which predisposes to disease. Using non-obese diabetic mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly higher, and microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and Treg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals. PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression and T-cell populations, accelerating T1D onset in non-obese diabetic mice.


Asunto(s)
Antibacterianos/efectos adversos , Diabetes Mellitus Tipo 1/etiología , Microbioma Gastrointestinal/efectos de los fármacos , Penicilina V/efectos adversos , Animales , Antibacterianos/administración & dosificación , Colesterol/biosíntesis , Esquema de Medicación , Heces/microbiología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad , Metabolismo de los Lípidos/efectos de los fármacos , Metaboloma/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/inmunología , Obesidad , Penicilina V/administración & dosificación , ARN Ribosómico 16S , Linfocitos T Reguladores , Células Th17
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...